Extensions 1→N→G→Q→1 with N=C2 and Q=C23×Dic7

Direct product G=N×Q with N=C2 and Q=C23×Dic7
dρLabelID
C24×Dic7448C2^4xDic7448,1383


Non-split extensions G=N.Q with N=C2 and Q=C23×Dic7
extensionφ:Q→Aut NdρLabelID
C2.1(C23×Dic7) = C23×C7⋊C8central extension (φ=1)448C2.1(C2^3xDic7)448,1233
C2.2(C23×Dic7) = C22×C4×Dic7central extension (φ=1)448C2.2(C2^3xDic7)448,1235
C2.3(C23×Dic7) = C22×C4.Dic7central stem extension (φ=1)224C2.3(C2^3xDic7)448,1234
C2.4(C23×Dic7) = C22×C4⋊Dic7central stem extension (φ=1)448C2.4(C2^3xDic7)448,1238
C2.5(C23×Dic7) = C2×C23.21D14central stem extension (φ=1)224C2.5(C2^3xDic7)448,1239
C2.6(C23×Dic7) = C2×D4×Dic7central stem extension (φ=1)224C2.6(C2^3xDic7)448,1248
C2.7(C23×Dic7) = C24.38D14central stem extension (φ=1)112C2.7(C2^3xDic7)448,1251
C2.8(C23×Dic7) = C2×Q8×Dic7central stem extension (φ=1)448C2.8(C2^3xDic7)448,1264
C2.9(C23×Dic7) = C14.422- 1+4central stem extension (φ=1)224C2.9(C2^3xDic7)448,1265
C2.10(C23×Dic7) = C2×Q8.Dic7central stem extension (φ=1)224C2.10(C2^3xDic7)448,1271
C2.11(C23×Dic7) = C28.76C24central stem extension (φ=1)1124C2.11(C2^3xDic7)448,1272
C2.12(C23×Dic7) = C4○D4×Dic7central stem extension (φ=1)224C2.12(C2^3xDic7)448,1279
C2.13(C23×Dic7) = C14.1062- 1+4central stem extension (φ=1)224C2.13(C2^3xDic7)448,1280
C2.14(C23×Dic7) = C22×C23.D7central stem extension (φ=1)224C2.14(C2^3xDic7)448,1292

׿
×
𝔽